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" Curvature is suggested as a fundamental 

organizational dimension of object responses [1, 2]

" While there may be a clear definition of curvature 

for artificial stimuli [3], defining curvature of 
naturalistic object images remains challenging

*

*

BACKGROUND How does perceived curvature relate to other curvature,        

texture and shape measures?

How do the curvature measures relate to

neural object responses?

How can we automatically quantify the

perceived curvature of novel images?

" Low correlation of curvature measures

" Perceived curvature is best explained by 

shape-related measures dimensions underlying 

similarity judgements

noise ceiling

computed curvature

natural segmented

R2

Variance explained in perceived curvature

Perceived curvature ratings

" Rich dataset of curvature ratings for > 27k natural 

object images of the THINGS database [4, 5]

100 most curvy0 most rectilinear

Split-half 

reliability 

r = 0.93

Computed curvature

" MLV toolbox [6]

" Li & Bonner [1]

" Normalized contour 

curvature (NCC) [3] natural segmented

ShapeComp [7]

" image-computed shape descriptors reflecting shape 

similarity ratings

SPoSE Dimensions [8] 

" Shape and texture related dimensions based on 

human similarity judgements of object images

THINGS-fMRI [9]

" fMRI responses of 3 participants to 8640 natural 

images of 720 object concepts

global shape

vs. local features

how to deal with

background features?

how to deal with object cropping, 

viewing angle, & lighting? 

How can we quantify perceived curvature of 

natural images, and how does this perceived 

curvature relate to patterns of brain activity?
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" Perceived curvature best predicts responses in higher-level visual cortex, with 

rectilinear preferences in scene-selective regions and interleaved curvy 

preferences
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" Ensemble model (CLIP, Resnet50, & ConvNext [10-12]) 

predicting perceived curvature of natural images

" Performance closely approaches noise-ceiling

CONCLUSION

" Discrepancies between curvature measures highlight the 

challenges of quantifying curvature of natural object 

images

" Humans can reliably judge object curvature, which differs 
from computed curvature

" This perceived curvature is a candidate organizational 

dimension of responses to natural object images

" Recognizing its importance, we make perceived curvature 

image-computable with pCurvComp
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Validation with external dataset 
(Long et al.  2018)

R2 = 0.70 R2 = 0.19

Future directions:

Identify the image-features 

pCurvComp relies on for its 

predictions
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pCurvComp

R2 = 0.81
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